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A reinsurance contract should address the conflicting interests of the insurer and 
reinsurer. Most of the existing optimal reinsurance contracts only consider the interests 
of one party. This article combines the proportional and stop-loss reinsurance contracts 
and introduces a new reinsurance contract called proportional-stop-loss reinsurance. 
Using the balanced loss function, unknown parameters of the proportional-stop-loss 
reinsurance have been estimated such that the expected surplus for both the insurer and 
reinsurer are maximized. Several characteristics for the new reinsurance are provided.
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1. Introduction

Designing an optimal reinsurance strategy is an interesting actuarial problem that must balance 
several conflicting interests. Most of the existing optimal reinsurance strategies only consider the 
interest of one side. Gerber (1979) showed that excess of loss reinsurance maximizes the adjustment 
coefficient when the loading coefficient is independent of the type of reinsurance strategy and the 
reinsurance premium calculation principle used is the expected value principle.

Other authors have reached similar results for reinsurance that favor the insurance company. Khan
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(1961), Arrow (1963; 1974), Beard et al. (1977), Cai & Tan (2007), Cai et al. (2008) and Tan et al.

(2011) all represent the perspective of the insurance company. All research represents one side of

the reinsurance contract, but because of the nature of reinsurance contracts, both the insurance and

reinsurance companies must be represented. Borch (1960) discussed optimal quota-share retention

and stop-loss retention to maximize the product of the expected utility functions of two-party

profits. Similar results in favor of two parties were developed by Borch (1969), Ignatov et al.

(2004), Kaishev & Dimitrova (2006), Dimitrova & Kaishev (2010), and Cai et al. (2013).

Some researchers have achieved a balance between the desirability of the insurance and reinsurance

companies by combining different reinsurance strategies. This approach began with Centeno (1985),

who combined quota-share and excess of loss reinsurance strategies and defined a new reinsurance

strategy. She assumed that the insurance company will pay min{αX,M} for loss X and constant

α and M . She estimated α and M by minimizing the coefficient of variation and the skewness of

the insurance loss. Centeno & Simoẽs (1991) determined parameters for a mixture of quota-share

and excess of loss reinsurance so that adjustment coefficient R is maximized. Liang and Guo (2011)

used the reinsurance strategy proposed by Centeno (1985) and estimated α and M by maximizing

the expected exponential utility from terminal wealth.

Gajek & Zagrodny (2000) showed that for a bounded-above reinsurance premium, the reinsurance

strategy that minimizes the variance of the retained risk of the insurance company takes the form

(1−α)(X−M)I[M,∞)(X) as the reinsurance portion of loss X. Kaluszka (2004) derived an optimal

reinsurance strategy that is a trade-off for the insurer between decreasing the variance of the retained

risk and the expected value of its gain. Guerra & Centeno (2008) provided optimal reinsurance that

maximizes the adjustment coefficient of the retained risk by exploring the relationship between the

adjustment coefficient and expected wealth exponential utility. Cai et al. (2013) and Fang & Qu

(2014) examined the reinsurance strategy of Centeno (1985). They maximized the joint survival

probability of both the insurer and reinsurer and derived a class of estimators for the parameters of

the reinsurance strategy. Brachetta and Ceci (2021) developed an optimal reinsurance contract that
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simultaneously determine the optimal starting time and optimal retention level of the contract. Un-

der the Solvency II framework, Zanotto and Clemente (2021) combined several reinsurance treaties

to obtain an optimal reinsurance contract that maximizes both solvency ratio and portfolio perfor-

mance. Zhang et al. (2021) combined two quota-share and excess-of-loss reinsurance contracts and

employed the optimal control technique to designed an optimal per-loss reinsurance strategy for a

given health insurance package. Zhu and Yin (2021) employed a distortion risk measure to obtain

an optimal reinsurance contract. The optimal time to merge two proportional reinsurance policies,

which maximizes the survival probability of both cedent and reinsurer has been determined by Li

and Li (2021).

These results and those of other studies may lead one to conclude that optimality for a reinsurance

strategy is either finding a strategy between all possible (or constrained) reinsurance strategies or

estimating unknown parameters of a given reinsurance strategy. The present article defines optimal

reinsurance by estimating unknown parameters α and M as:

Yi = αmin (Xi,M) (1)

which is the insurer portion from random claim Xi under a reinsurance strategy. This form of

reinsurance strategy is called proportional excess of loss reinsurance and is a version of the rein-

surance from Centeno (1985). More precisely, she considered Yi = min{αXi,M} as the insurer

portion from random claim Xi. Therefore, one may conclude that, there is not any essential dif-

ference between the reinsurance strategy (1) and Centeno (1985). But, this article estimates two

unknown parameters of the new strategy (1) by taking into account both parties (i.e., insurer’s and

reinsurer’s companies). More precisely, unknown parameters α and M in the proportional excess

of loss reinsurance strategy shown in Equation (1) can be estimated in two steps. First, estimate

the parameters such that the expected utility of the insurer (or reinsurer) is maximized. Next, use

the estimated parameters from the insurer and reinsurer as target estimators. Then, it develops a

Bayesian estimator with respect to the doubly-balanced loss function for each parameter so that

the expected surplus of the insurer and reinsurer are maximized.
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Section 2 defines elements of the proposed method. Section 3 examines the optimal properties of

the proportional excess of loss reinsurance strategy. The Bayesian estimator for a doubly-balanced

loss function for the parameters of the proportional-excess-loss reinsurance strategy are described

in Section 4. Section 5 provides an example of the practical implementation of the results. Section

6 concludes the paper.

2. Preliminaries and Model

Suppose random claim Xi has cumulative distribution function F (x), and survival function F̄ (x).

Moreover, suppose that random claim Xi can be decomposed to the sum of the insurer portion

(Yi) and reinsurer portion (I(Xi)), i.e., Xi = Yi + I(Xi). Now consider the combination of the

proportional and excess of loss reinsurance strategies, such as proportional-excess-loss reinsurance

Yi = αmin (Xi,M) .

Next define the value-at-risk (VaR) and tail-value-at-risk (TVaR), the most popular risk measures.

Definition 1. Suppose X stands for a random risk. The Value-at-Risk and the Tail-Value-at-Risk

at level p ∈ (0, 1), are defined as:

VaR[X; p] = inf{x ∈ R |FX(x) ≥ p};

TVaR[X; p] =
1

1− p

∫ 1

p

VaR[X; ξ]dξ,

where F (x) stands for the cumulative distribution function of X.

Random variable X is less dangerous than random variable Y whenever V aR [X;α0] ≤ V aR [Y ;α0]

for given probability level α0 ∈ (0, 1). TVaR is the arithmetic average of the VaRs of X from p to 1.

The VaR at a given level p does not provide useful information about the thickness of X, but TVaR

does (Denuit et al. 2005). The following represents definition of the ordinary balanced loss function

for given target estimators δ0 and δ1, a doubly-balanced loss function. The target estimator is a

well-known value for a specific parameter.
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Definition 2. Suppose δ0 and δ1 are given target estimators for unknown parameter ξ. Moreover,

suppose that ρ(·, ·) is an arbitrary and given loss function. The doubly-balanced loss function of the

measure of closeness of estimator δ to target estimators δ0 and δ1 and unknown parameter ξ under

loss function ρ(·, ·) is

Lρ,ω1,ω2,δ0,δ1(ξ, δ) = ω1ρ(δ0, δ) + ω2ρ(δ1, δ)

+(1− ω1 − ω2)ρ(ξ, δ), (2)

where ω1 ∈ [0, 1) and ω2 ∈ [0, 1) are weights which satisfy ω1 + ω2 < 1.

The ordinary balanced loss function with one given target estimator was introduced by Zellner

(1994) and improved by Jafari et al. (2006), among others. For convenience, L0 will subsequently

be used instead of Lρ,0,0,δ0,δ1 whenever ω1 = 0 and ω2 = 0. Theorem (1) derives a Bayesian estimator

for ξ under the doubly-balanced loss function Lρ,ω1,ω2,δ0,δ1 .

Theorem 1. Suppose expected posterior losses ρ(δ0, δ) and ρ(δ1, δ) are finite for at least one δ in

which δ ̸= δi, for i = 0, 1. The Bayesian estimator for ξ for prior distribution π(ξ) and under

Lρ,ω1,ω2,δ0,δ1 is equivalent to the Bayesian estimator for prior distribution:

π∗(ξ |x) = ω11{δ0(x)}(ξ) + ω21{δ1(x)}(ξ)

+(1− ω1 − ω2)π(ξ |x),

under loss function L0 := Lρ,0,0,δ0,δ1 .

Proof. Suppose that measures µX(·) and µ′
X(·) dominate π(ξ |x) and π∗(ξ |x), respectively. By the
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definition of Bayesian estimators under finite expected posterior loss ρ(δ0, δ) and ρ(δ1, δ) :

argmin
δ

∫

Ξ

{ω1ρ(δ0, δ) + ω2ρ(δ1, δ)

+(1− ω1 − ω2)ρ(ξ, δ)}π(ξ |x)dµX(ξ)

= argmin
δ

∫

Ξ

{ω1ρ(ξ, δ)1{δ0(x)}(ξ) + ω2ρ(ξ, δ)1{δ1(x)}(ξ)

+(1− ω1 − ω2)ρ(ξ, δ)}π(ξ |x)dµX(ξ)

= argmin
δ

∫

Ξ

ρ(ξ, δ){ω11{δ0(x)}(ξ) + ω21{δ1(x)}(ξ)

+(1− ω1 − ω2)}π(ξ |x)dµX(ξ)

= argmin
δ

∫

Ξ∪{δ0(x)}∪{δ1(x)}
L0(ξ, δ)π

∗(ξ |x)dµ′
X(ξ)

= δ∗(x). �

This theorem is an extension of Lemma (1) in Jafari et al. (2006). The next lemma provides a

Bayesian estimator under the doubly-balanced loss function with square error loss.

Lemma 1. The Bayesian estimator for prior π and under the doubly-balanced loss function with

square error loss (ρ(ξ, δ) = (ξ − δ)2) is the square error doubly-balanced loss function given by:

δπ,ω1,ω2(x) = Eπ∗(ξ |x) = ω1δ0(x) + ω2δ1(x)

+(1− ω1 − ω2)Eπ(ξ |x). (3)

Proof. The desired result arrives by the fact that the Bayes estimator under the square error loss

is the expectation (in the sense of the Riemann-Stieltjes integral) of the posterior distribution. �

The Bayesian estimator with respect to the doubly-balanced loss function has two parameters,

therefore, one may estimate these two parameter by maximizing the expected surplus of the insurer

and reinsurer.
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3. Optimal properties of proportional-excess-loss reinsurance

This section considers the proportional-excess-loss reinsurance in Equation (1) and establishes ap-

propriate properties for that reinsurance strategy. Theorem (2) shows that the proportional-excess-

loss reinsurance minimizes the variance of the retained risk in some situations.

Theorem 2. Suppose I(X) and IN(X) are the reinsurer contribution under an arbitrary reinsurance

strategy and the proportional-excess-loss reinsurance for random claim X, respectively. Moreover,

suppose that E(I(X)) = E(IN(X)) and

(i) P (I(X) ≥ IN(X)|X ≤ M) = 1;

(ii) P (I(X) ≥ IN(X)|X ≥ M&X − I(X) ≤ M) = 1;

(iii) P (I(X) ≤ IN(X)|X ≥ M&X − I(X) ≥ M) = 1;

Then variance of the retained risk under the proportional-excess-loss reinsurance is less than such

arbitrary reinsurance strategy, i.e., V ar(X − I(X)) ≥ V ar(X − IN(X)).

Proof. When E(I(X)) = E(IN(X)), V ar(X − I(X)) ≥ V ar(X − IN(X)) whenever E[(X −

I(X))2] ≥ E[(X − IN(X))2]. Setting W (X) := X − IN(X) − M and V (X) := X − I(X) − M.

Since E(W (X)) = E(V (X)), it suffices to show that |V (X)| ≥ |W (X)| with probability one. Now

consider the following cases:

(i) If X ≤ M then W (X) < 0,

|V (X)| ≥ |W (X)| ⇔ |X − I(X)−M | ≥ M − αX

⇔ M + I(X)−X ≥ M − αX

⇔ (1− α)X ≤ I(X)

⇔ IN(X) ≤ I(X);

7
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(ii) If X > M then W (X) < 0,

|V (X)| ≥ |W (X)|

⇔ |X − I(X)−M | ≥ (1− α)M

⇔





M −X + I(X) ≥ (1− α)M for X − I(X) < M ;

X − I(X)−M ≥ (1− α)M for X − I(X) > M,

⇔





I(X) ≥ IN(X), for X − I(X) < M ;

IN(X) ≥ I(X), for X − I(X) > M,

. �

Theorem (2) provides conditions under which the variance of the insurer contribution under proportional-

excess-loss reinsurance is less than under other reinsurance strategies. Excess of loss and propor-

tional reinsurance strategies do not satisfy Theorem (2) conditions. Therefore, the above finding

does not contradict Bowers et al. (1997).

The following theorem compares proportional-excess-loss reinsurance with the proportional reinsur-

ance and the excess of loss reinsurance strategies for stochastic dominance.

Theorem 3. Suppose IN(X) is the contribution of reinsurance against random claim X under

the proportional-excess-loss reinsurance. Moreover, suppose that IP (X) (IE(X)) is the contribution

of reinsurance against random claim X under the proportional (or the excess of loss) reinsurance

strategies. Then:

P (X − IN(X)≤X − IP (X)) = P (X − IN(X)≤X − IE(X))) = 1. (4)

Proof. To achieve the desired proof, it suffices to show that P (A1) = 1 (P (A2) = 1), where

A1 := {IN(X)≥ IE(X)} (A2 := {IN(X)≥ IP (X)}). Now consider the following two cases:

(i) Under excess of loss reinsurance, IE(X) = X −min(X,M); therefore:

P (A1) = P (A1, X ≤ M) + P (A1, X > M)

= P (0 < X ≤ M) + P (X > M) = 1;
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(ii) Under proportional reinsurance, IP (X) = (1− α)X; therefore:

P (A2) = P (A2, X ≤ M) + P (A2, X > M)

= P (X ≤ M) + P (X > M) = 1. �

From Theorem (3) and properties of VaR and the TVaR it can be concluded that the VaR and

the TVaR of the insurer contribution under proportional-excess-loss reinsurance is less than for

excess of loss and proportional reinsurance strategies, i.e., VaR[X− IN(X); p] ≤ VaR[X− IE(X); p]

(VaR[X − IN(X); p] ≤ VaR[X − IP (X); p]) for all p ∈ (0, 1). It can be concluded that TVaR[X −

IN(X); p] ≤ TVaR[X − IE(X); p] (TVaR[X − IN(X); p] ≤ TVaR[X − IP (X); p],) for all p ∈ (0, 1).

4. Estimating proportional-excess-loss reinsurance parameters

This section considers proportional excess of loss reinsurance as defined in Equation (1). An optimal

reinsurance strategy was derived by estimating unknown parameters α and M. First, the parameters

were estimated by maximizing the expected wealth for the insurer (reinsurer) using an exponential

utility function. Next, the estimated parameters from the insurer and reinsurer were used as target

estimators. A Bayesian estimator was developed for the doubly-balanced loss function for each

parameter to maximize the expected exponential utility of terminal wealth for the insurer and

reinsurer. Parameters α and M were first estimated using exponential utility function to maximize

the expected exponential utility of the reinsurer’s terminal wealth. Represent the surplus of the

insurer in the proportional excess of loss reinsurance strategy as:

Ut = u0 + (1 + θ0)E(

N(t)∑
i=1

Yi)−
N(t)∑
i=1

Yi

= u0 + π0(t)− S(t), (5)

where u0 is the initial wealth of the insurer, random variable Yi is the insurer portion of random

claim Xi, θ0 is the safety factor, and N(t) is the Poisson process with intensity λ. The expected

9
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wealth of the insurer under the exponential utility u(x) = −e−β0x is:

E(− exp(−β0(U0 + π0(t)−
N(t)∑
i=1

Yi))). (6)

Using the definition for premium π0(t) :

π0(t) = (1 + θ0)λt

[
α

∫ M

0

xdF (x) + αM [1− F (M)]

]
, (7)

where f(·) and F (·) are the density and distribution functions of random claim Xi, respectively.

Theorem (4) provides two estimators for α and M, α̂0 and M̂0, that maximize the expected wealth

of the insurer Formula (6).

Theorem 4. Suppose the surplus of the insurer for proportional-excess-loss reinsurance strategy is

calculated using Equation (5). Then, α̂0 and M̂0 maximize the expected exponential utility of the

insurer’s terminal wealth from Equation (6) as:

0 = −α̂0β0M̂0 + ln(1 + θ0),

0 = −β0(1 + θ0)λt

∫ M̂0

0

xdF (x)− β0(1 + θ0)λtM̂0F̄ (M̂0)

+λβ0t

∫ M̂0

0

xeα̂0β0xdF (x) + λβ0tM̂0e
α̂0β0M̂0F̄ (M̂0),

where F̄ (·) is the survival function.

Proof. Restate the expected exponential utility of the insurer’s terminal wealth, (Equation 6) as

follows:

−e−β0(U0+π0(t))E(e
β0

N(t)∑
i=1

Yi

)

= −e−β0(U0+π0(t))eλt(E(eβ0Y )−1)

= −e(−β0(U0+(1+θ0)λt[α
∫M
0 xdF (x)+αMF̄ (M)])

×eλt[
∫M
0 eαβ0xdF (x)+eαβ0M F̄ (M)]).

10
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Parameters α and M maximize this expression and can be calculated by minimizing:

g0(α,M) = −β0(1 + θ0)λt

[
α

∫ M

0

xdF (x) + αMF̄ (M)

]

+λt

[∫ M

0

eαβ0xdF (x) + eαβ0M F̄ (M)

]
. (8)

Differentiating g0(α,M) with respect to α and M and setting them equal to zero produces:

∂g0
∂α

= −β0(1 + θ)λt

∫ M

0

xdF (x)− β0(1 + θ)λtMF̄ (M)

+λβ0t

∫ M

0

xeαβ0xdF (x) + λβ0tMeαβ0M F̄ (M) = 0

∂g0
∂M

= −β0(1 + θ)αλtF̄ (M) + λαβ0te
αβ0M F̄ (M) = 0.

It is proven that the solutions to this for α and M, α̂0 and M̂0, minimize g0(α,M). It must be shown

that the following Hessian matrix at point (α̂0, M̂0) has a positive determinant and that the first

argument (a11)is also positive.
(

λt
∫ M̂0

0
β2
0x

2eα̂0β0xdF (x) + λtβ2
0M̂

2
0 e

α̂0β0M0F̄ (M̂0) λα̂0β
2
0tM̂0e

α̂0β0M̂0F̄ (M̂0)

λα̂0β
2
0tM̂0e

α̂0β0M̂0F̄ (M̂0) λα̂2
0β

2
0te

α̂0β0M̂0F̄ (M̂0)

)
.

This is arrived at using straightforward calculation. �

When α̂0 > 1(< 0), it must be projected into [0, 1]. Now estimate unknown parameters α and

M in the proportional-excess-loss reinsurance strategy Equation (1) to maximize the expected

exponential utility function (u(x) = −e−β1x) of the reinsurance wealth. Suppose the surplus of

reinsurer company under the proportional-excess-loss reinsurance strategy is:

U∗
t = u∗

0 + π1(t)−
N(t)∑
i=1

I(Xi) (9)

where u∗
0 is the initial wealth of the reinsurer, random variable I(Xi) represents the reinsurer

portion against random claim Xi, π1(t) is premium of the reinsurance strategy in time t, and N(t)

is a Poisson process with intensity λ. Under the expectation premium principle with safety factor

θ1, premium π1(t) can be restated as:

(1 + θ1)λt

[
(1− α)

∫ M

0

xdF (x) +

∫ ∞

M

(x− αM)dF (x)]

]
,

11
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where f(·) is the density function of random claim Xi. The expectation of reinsurer wealth using

exponential utility function u(x) = −e−β1x is:

E(−exp(−β1(u
∗
0 + π1(t)−

N(t)∑
i=1

I(Xi)))). (10)

Theorem (5) provides two estimators for α and M, α̂1 and M̂1, that maximize Equation (10).

Theorem 5. Suppose the surplus for a reinsurance company under the proportional-excess-loss

reinsurance strategy can be represented by Equation (9). Then, α̂1 and M̂1 which maximize the

expected exponential utility of the reinsurer’s terminal wealth given by Equation (10), can be found

as:

0 = −
∫ M̂1

0

β1xe
β1(1−α̂1)xdF (x)−

∫ ∞

M̂1

β1M̂1e
β1(x−α̂1M̂1)dF (x)

+ β1(1 + θ1)

∫ M̂1

0

xdF (x) + β1(1 + θ1)

∫ ∞

M̂1

M̂1dF (x)

0 = −
∫ ∞

M̂1

β1α̂1e
−β1(x−α̂1M̂1)dF (x) + β1(1 + θ)α̂1(1− F (M̂1))

Proof. Parameters α and M maximize the expected exponential utility of the reinsurer’s terminal

wealth in Equation (10) and can be found by minimizing the following expression:

g1(α,M) =

∫ M

0

eβ1(1−α)xdF (x)

+

∫ ∞

M

eβ1(x−αM)dF (x)

− β1(1 + θ1)

∫ M

0

(1− α)xdF (x)

− β1(1 + θ1)

∫ ∞

M

(x− αM)dF (x)

12
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Differentiating g1(α,M) with respect to α and M and setting them equal to zero produces:

∂g1
∂α

= −
∫ M

0

β1xe
β1(1−α)xdF (x)

−
∫ ∞

M

β1Meβ1(x−αM)dF (x)

+ β1(1 + θ1)

∫ M

0

xdF (x)

+ β1(1 + θ1)

∫ ∞

M

MdF (x) = 0

∂g1
∂M

= −
∫ ∞

M

β1αe
−β1(x−αM)dF (x)

+ β1(1 + θ)α(1− F (M)) = 0.

The proof shows that the solutions of this equation for α and M, α̂1 and M̂1, minimize g1(α,M). It

must be shown that the following Hessian matrix at point (α̂1, M̂1) has a positive determinant and

a11 > 0:

H1(α̂1, M̂1) =

(
a11 a12

a21 a22

)
,

where

a11 =

∫ M̂1

0

β2
1x

2eβ1(1−α̂1)xdF (x)

+

∫ ∞

M̂1

β2
1M̂

2
1 e

β1(x−α̂1M̂1)dF (x)

a12 = a21 = (−1 + β1α̂1M̂1)

∫ ∞

M̂1

β1e
β1(x−α̂1M̂1)dF (x)

+β1(1 + θ)(1− F (M̂1))

a22 =

∫ ∞

M̂1

β2
1 α̂

2
1e

β1(x−α̂1M̂1)dF (x)

+β1α̂1e
β1(1−α̂1)M̂1f(M̂1)− β1α̂1(1 + θ)f(M̂1).

the positivity of the determinant of the Hessian matrix cannot be established and must be verified

in practice; however, it is evident that a11 > 0. �

Thus far, the optimal reinsurance strategy has been defined for the insurer and reinsurer to integrate

the results and define an optimal reinsurance strategy that considers the interests of both parties.

13
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A Bayesian estimator was developed for α and M for the doubly-balanced loss function in Equation

(2). Estimators α̂0 and α̂1 (M̂0 and M̂1) are target estimators for the doubly-balanced loss function.

For convenience, Zi = I(Xi) . Lemma (2) provides a cumulative distribution function and density

function for conditional random variable Z|(θ, α,M).

Lemma 2. Suppose X|θ has continuous distribution function FX|θ(·) and continuous density func-

tion fX|θ(·). Moreover, suppose that Z1, · · · , Zn|(θ, α,M) are a sequence of i.i.d. random variables

with common density function fZ|(θ,α,M)(·). Then, the joint density function of Z1, · · · , Zn|(θ, α,M)

can be represented as:

f(z1, · · · , zn |θ, α,M ) =

(
1

1− α

)n1 n1∏
i=1

fX|θ (
zi

1− α
)

×
n∏

i=n1+1

fX|θ (zi + αM),

where n1 is the number of zis that is less than or equal to (1− α)M .

Proof. For one sample Z |(θ, α,M) the distribution function is:

FZ|θ,α,M (z) = P (Z ≤ z)

= P ((1− α)X ≤ z,X ≤ M)

+P (X − αM ≤ z,X > M)

= P (X ≤ min{ z

1− α
,M})

+P (M < X ≤ z + αM)

= FX(min{ z

1− α
,M})

+FX(z + αM)− FX(M)

= FX(
z

1− α
)I(−∞, (1−α)M ](z)

+FX(z + αM)I((1−α)M, ∞)(z),

14



Amit T. Payandeh-Najafabadi & Ali Panahi-Bazaz	 105

where IA(x) stands for the indicator function. Differentiating F (z) with respect to z leads to:

fZ|θ,α,M (z) =
1

1− α
fX(

z

1− α
)I(−∞, (1−α)M ](z)

+fX(z + αM)I((1−α)M, ∞)(z).

Suppose that n1 (0 ≤ n1 ≤ n) represents the number of zis that is less than or equal to (1− α)M.

The joint density function for an independent sequence of random variables obtained by multiplying

their marginal density functions is the desired proof. �

Lemma (3) develops the joint posterior distribution for (θ, α,M) given random sample Z1, · · · , Zn.

Lemma 3. Suppose Z1, · · · , Zn|(θ, α,M) are a sequence of i.i.d. random variables with common

density function fZ|θ,α,M (z). Moreover, suppose that π1(Θ), π2(A), and π3(M) are prior distribu-

tions for θ, α, and M, respectively. Then, the joint posterior distribution for (θ, α,M |Z1, · · · , Zn )

is:

(
1

1−α

)n1
n1∏
i=1

fX|θ
(

zi
1−α

) n∏
i=n1+1

fX|θ (zi + αM)π1(θ)π2(α)π3(M)

∫
M

∫
A

∫
Θ

(
1

1−α

)n1
n1∏
i=1

fX|θ
(

zi
1−α

) n∏
i=n1+1

fX|θ (zi + αM)π1(θ)π2(α)π3(M)dθdαdM

where n1 is the number of zis that less than or equal to (1− α)M .

Proof. The joint density function of Z1, · · · , Zn|(θ, α,M) plus the prior distributions for θ, α, and

M are the desired proof. �

The marginal density functions for (α |Z1, · · · , Zn ) and (M |Z1, · · · , Zn ) are

π(α |Z1, · · · , Zn ) =

∫

Θ

∫

M

π(θ, α,M |Z1, · · · , Zn ) dMdθ;

π(M |Z1, · · · , Zn ) =

∫

Θ

∫

A

π(θ, α,M |Z1, · · · , Zn ) dαdθ.

Theorem (6) provides the Bayesian estimator for α and M for the doubly-balanced loss function in

Equation (2).
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Theorem 6. Suppose Z1, · · · , Zn|(θ, α,M) are a sequence of i.i.d. random variables with common

density function fZ|(θ,α,M) (z). Moreover, suppose that π1(Θ), π2(A), and π3(M) are prior distri-

butions for θ, α, and M, respectively. Then, the Bayesian estimators for α and M for the square

error doubly-balanced loss function, prior distribution π, and target estimators α̂0, α̂1 and M̂0, M̂1

are

α̂π,ω1,ω2 = ω1α̂0 + ω2α̂1 + (1− ω1 − ω2)Eπ(A |z ),

M̂π,ω1,ω2 = ω1M̂0 + ω2M̂1 + (1− ω1 − ω2)Eπ(M|z ).

Proof. The results of Lemma (2), Lemma (3), Theorem (1) and Lemma (1) provide the desired

proof. �

5. Simulation study

This section provides two numerical examples to show how the above findings can be applied in

practice. It develops (i) estimators for α and M, α̂0 and M̂0, so that insurer wealth is maximized;

(ii) estimators for α and M, α̂1 and M̂1, so that reinsurer’s wealth is maximized; (iii) Bayesian

estimators for α and M for the square error doubly-balanced loss function for prior distributions

α ∼ Beta(2, 2) and M ∼ Exp(2), and target estimators α̂0, α̂1 and M̂0, M̂1.

Example 1. Suppose 4.117, 1.434, 0.453, 3.333, 0.456, 0.0637, 0.145, 0.211, 3.618, 5.467 is a

random sample generated from an exponential distribution with intensity 1. Moreover, suppose that

Beta(2, 2) and Exp(2) are prior distribution functions for parameters α and M, respectively.

The following provides practical steps to find the optimal proportional-excess-loss reinsurance strat-

egy.

Step 1: Assuming β0 = 2 and θ0 = 0.8, in Theorem (4), lead to α̂0 = 0.27 and M̂0 = 1.08;
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Step 2: Assuming β1 = 0.2 and θ1 = 0.3, in Theorem (5), lead to α̂1 = 0.38 and M̂1 = 37.001

where det(H1(0.38, 37.001)) > 0;

Step 3: Suppose 0.453, 0.456, 0.0637, 0.145, 0.211 in the random sample are ≤ (1−α)M. Moreover,

suppose that Beta(2, 2) and Exp(2) are prior distribution functions for α and M, respectively.

Application of Lemma (1) leads to the Bayesian estimators for α and M :

α̂π,ω1,ω2 = 0.27ω1 + 0.38ω2 + 0.6(1− ω1 − ω2)

= 0.6− 0.33ω1 − 0.22ω2;

M̂π,ω1,ω2 = 1.08ω1 + 37.001ω2 + 0.78(1− ω1 − ω2)

= 0.78 + 0.3ω1 + 36.221ω2,

where, under boundary conditions ω1 and ω2 (i.e., ω1 & ω2 ∈ [0, 1] and ω1 + ω2 ≤ 1), both

estimators are positive.

Table 1 shows Bayesian estimators α̂π,ω1,ω2 and M̂π,ω1,ω2 for different values of ω1 and ω2 that satisfy

the boundary conditions for ω1 and ω2.

Table 1: Bayes estimators α̂π,ω1,ω2 and M̂π,ω1,ω2 for some different values of ω1 and ω2.

Bayes estimator
ω1 ω2 1− ω1 − ω2 α̂π,ω1,ω2 M̂π,ω1,ω2

0.1 0.1 0.8 0.545 4.43
0.1 0.2 0.7 0.523 8.05
0.1 0.3 0.6 0.501 11.67
0.1 0.4 0.5 0.479 15.29
0.1 0.5 0.4 0.457 18.92
0.1 0.6 0.3 0.435 22.54
0.1 0.7 0.2 0.413 26.16
0.1 0.8 0.1 0.391 29.78
0.1 0.9 0 0.369 33.40
0.1 0.1 0.8 0.545 4.432
0.2 0.1 0.7 0.512 4.462
0.3 0.1 0.6 0.479 4.492
0.4 0.1 0.5 0.446 4.522
0.5 0.1 0.4 0.413 4.552
0.6 0.1 0.3 0.380 4.582
0.7 0.1 0.2 0.347 4.612
0.8 0.1 0.1 0.314 4.642
0.9 0.1 0 0.281 4.672
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As one may observe from result of Table 1, choice of ω1, ω2 have a big impact on estimated M and

do not have such impact on estimated α.

Using result of Table 1, one may determine the desired optimal proportional-excess-loss reinsurance

strategy.

The following example assume ω1 = 0.25, ω2 = 0.15 in Theorem (6) provides the optimal proportional-

excess-loss reinsurance strategy for some different claim size distributions.

Example 2. Suppose X1, · · · , X100 is a sequence of random sample from distributions given by the

first column of Table 2. Moreover, suppose that, for each claim size distribution, prior distributions

for α and M are given by Table 2.

For each claim size distribution, we generate random sample X1, · · · , X100, 100 times and estimate

parameters α and M, for each iteration. Table 2 represents mean (and standard deviation) of Bayes

estimator of α and M for such 100 iterations.

To estimate unknown parameters α and M using the Bayesian method, we need initials to cat-

egorized data into two groups and prior distribution functions for α and M . Prior distribution

functions given by the second and third columns of Table 2.

Table 2: Random claim and prior distributions accompanied with posterior’s mean and standard deviation.
Claim size prior prior The mean (SD) The mean (SD)
distribution for α for M for α for M

EXP(1) Beta(2,2) EXP(2) 0.5189 3.6915
(0.03300) (0.04020)

EXP(4) Beat(2,2) EXP(2) 0.4306 0.7456
(0.03960) (0.00002)

EXP(8) Beta(3,2) Gamma(2,2) 0.4402 1.0748
(0.03660) (0.00001)

Weibull(2,1) Beta(2,4) Gamma(3,2) 0.5458 1.3813
(0.01500) (0.00003)

Weibull(4,1) Beat(5,2) Gamma(2,4) 0.5464 0.9142
(0.44160) (0.02340)

Weibull(2,4) Uniform(0,1) Gamma(3,4) 0.7612 2.4772
(0.00780) (0.02340)

The small standard deviation of these estimators shows that the estimation method is an appropriate

method to use with the different samples. Moreover, as one may observe from result of Table 2,
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choice of prior distributions for α and β have a sufficient impact on estimated M and do not have

such impact on estimated α.

The mean represented in Table 2 can be considered as a Bayesian estimator for α and M and

determine optimal proportional-excess-loss reinsurance.

6. Conclusion

This study combined excess of loss and proportional reinsurance strategies to introduce a new

reinsurance strategy, say proportional-excess-loss reinsurance. This optimal reinsurance strategy

has been achieved by estimating unknown parameters for the proportional-excess-loss reinsurance

strategy such that the expected exponential utility of the insurer’s and reinsurer’s terminal wealth

are maximized, simultaneously.

This new proportional-excess-loss reinsurance strategy can be extended to situations where there

are more than two unknown parameters in the reinsurance strategy. Then, unknown parameters

have been estimated from more optimal criteria.
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